题目内容

已知等差数列{an}和{bn}的前n项和分别为Sn和Tn,且
Sn
Tn
=
2n-1
2n+1
,则
a7
b7
=(  )
A、
13
15
B、
25
27
C、
27
29
D、
11
13
考点:等差数列的性质
专题:综合题,等差数列与等比数列
分析:由等差数列的性质把要求的比值,通过等差数列的求和公式转化为它们前n项和的比值,代公式即可得答案.
解答: 解:由等差数列的性质可得:
a7
b7
=
13a7
13b7
=
13×
a1+a13
2
13×
b1+b13
2
=
S13
T13
=
2×13-1
2×13+1
=
25
27

故选:B.
点评:本题考查等差数列的性质与求和公式,准确转化是解决问题的关键,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网