题目内容
16.已知$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(-2,-2),|$\overrightarrow{c}$|=2$\sqrt{2}$,$\overrightarrow{c}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=2,则$\overrightarrow{a}$和$\overrightarrow{c}$的夹角θ=120°.分析 由坐标可知$\overrightarrow{b}=-2\overrightarrow{a}$,代入条件式得出$\overrightarrow{a}•\overrightarrow{c}$,代入向量的夹角公式求出夹角.
解答 解:∵$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(-2,-2),∴$\overrightarrow{b}=-2\overrightarrow{a}$.
∴$\overrightarrow{c}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=-$\overrightarrow{a}•\overrightarrow{c}$=2,∴$\overrightarrow{a}•\overrightarrow{c}$=-2.
∴cos<$\overrightarrow{a},\overrightarrow{c}$>=$\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}||\overrightarrow{c}|}$=$\frac{-2}{\sqrt{2}•2\sqrt{2}}$=-$\frac{1}{2}$.
∴<$\overrightarrow{a},\overrightarrow{c}$>=120°.
故答案为120°.
点评 本题考查了平面向量的数量积运算,属于中档题.
练习册系列答案
相关题目
6.过点P(2,3)与已知直线x-y-7=0垂直的直线方程是( )
| A. | x-y-5=0 | B. | x+y-5=0 | C. | x-y+5=0 | D. | x+y+5=0 |
7.设a=${(\frac{1}{2})^{\frac{1}{2}}}$,b=log20142015,c=log42,则( )
| A. | a>b>c | B. | b>c>a | C. | b>a>c | D. | a>c>b |
11.${(x+\frac{1}{x}-2)^5}$展开式中常数项为( )
| A. | 160 | B. | -160 | C. | 252 | D. | -252 |
1.若复数z=a+bi(a,b∈R,i为虚数单位)满足z2=-1,则b=( )
| A. | 1 | B. | ±1 | C. | i | D. | ±i |
5.已知数列{an}的前n项为Sn,且满足关系式lg(Sn-1)=n (n∈N*),则数列{an}的通项公式an=( )
| A. | 9•10n-1 | B. | $\left\{{\begin{array}{l}{11}\\{9•{{10}^{n-1}}}\end{array}\begin{array}{l}{,n=1}\\{,n≥2}\end{array}}\right.$ | ||
| C. | 10n+1 | D. | $\left\{{\begin{array}{l}9\\{{{10}^n}+1}\end{array}\begin{array}{l}{,n=1}\\{,n≥2}\end{array}}\right.$ |