题目内容
记数列{an}的前n项和为Sn,若a1=1,2Sn=nan+1-
n3-n-
.
(Ⅰ)求an+3;
(Ⅱ)证明:?n∈N*,有
<
.
| 1 |
| 3 |
| 2 |
| 3 |
(Ⅰ)求an+3;
(Ⅱ)证明:?n∈N*,有
| n |
| i=1 |
| 1 |
| ai |
| 7 |
| 4 |
考点:数列的求和
专题:点列、递归数列与数学归纳法
分析:(Ⅰ)2Sn=nan+1-
n3-n-
⇒2Sn-1=(n-1)an-
(n-1)3-(n-1)-
(n≥2),两式相减,整理可得
-
=1(n≥2),继而可求得
-
=2-1=1,也符合上式,
从而可得数列{
}是以1为首项,1为公差的等差数列,可求得an=n2,从而可求得an+3;
(Ⅱ)利用
=
<
=
-
(n≥2),即可证得:?n∈N*,有
<
.
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| an+1 |
| n+1 |
| an |
| n |
| a2 |
| 2 |
| a1 |
| 1 |
从而可得数列{
| an |
| n |
(Ⅱ)利用
| 1 |
| an |
| 1 |
| n2 |
| 1 |
| (n-1)n |
| 1 |
| n-1 |
| 1 |
| n |
| n |
| i=1 |
| 1 |
| ai |
| 7 |
| 4 |
解答:
(Ⅰ)解:∵2Sn=nan+1-
n3-n-
,
∴2Sn-1=(n-1)an-
(n-1)3-(n-1)-
(n≥2).
两式相减得:2an=nan+1-(n-1)an-
(3n2-3n+1)-(2n-1)-
,
整理得:(n+1)an=nan+1-n(n+1),
∴
-
=1(n≥2),
又2S1=a2-
-1-
=2,
解得a2=4,∴
-
=2-1=1,也符合上式,
∴数列{
}是以1为首项,1为公差的等差数列,
∴
=1+(n-1)×1=n.
∴an=n2,
∴an+3=(n+3)2;
(Ⅱ)证明:∵an=n2,
∴
=
<
=
-
(n≥2),
∴
+
+…+
=
+
+
+…+
≤1+
+
+
+…+
<
+(
-
)+(
-
)+…+(
-
)
=
+
-
=
-
<
.
| 1 |
| 3 |
| 2 |
| 3 |
∴2Sn-1=(n-1)an-
| 1 |
| 3 |
| 2 |
| 3 |
两式相减得:2an=nan+1-(n-1)an-
| 1 |
| 3 |
| 2 |
| 3 |
整理得:(n+1)an=nan+1-n(n+1),
∴
| an+1 |
| n+1 |
| an |
| n |
又2S1=a2-
| 1 |
| 3 |
| 2 |
| 3 |
解得a2=4,∴
| a2 |
| 2 |
| a1 |
| 1 |
∴数列{
| an |
| n |
∴
| an |
| n |
∴an=n2,
∴an+3=(n+3)2;
(Ⅱ)证明:∵an=n2,
∴
| 1 |
| an |
| 1 |
| n2 |
| 1 |
| (n-1)n |
| 1 |
| n-1 |
| 1 |
| n |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
≤1+
| 1 |
| 4 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| (n-1)n |
<
| 5 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
=
| 5 |
| 4 |
| 1 |
| 2 |
| 1 |
| n |
| 7 |
| 4 |
| 1 |
| n |
| 7 |
| 4 |
点评:本题主要考查数列递推公式的应用,根据递推数列结合等差数列的定义求出通项公式,利用放缩法是证明不等式的基本方法,属于难题.
练习册系列答案
相关题目