题目内容
复数等于( )
A.4i B.-4i C.4 D.-4
D
在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名歌手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.
(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(Ⅱ) X表示3号歌手得到观众甲、乙、丙的票数之和, 求X的分布列和数学期望.
已知曲线C:xy=1,过C上一点An(xn,yn)作一斜率为kn=-的直线交曲线C于另一点An+1(xn+1,yn+1),点列{An}的横坐标构成数列{xn},其中x1=.
(1)求xn与xn+1的关系式;
(2)令bn=+,求证:数列{bn}是等比数列;
(3)若cn=3n-λbn(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有cn+1>cn成立.
在的展开式中,项的系数是 .
(用数字作答)
已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线
的焦点重合.
(1)求椭圆C的方程;
(2)已知经过定点M(2,0)且斜率不为0的直线交椭圆C于A、B两点,
试问在x轴上是否另存在一个定点P使得始终平分?若存在,
求出点坐标;若不存在,请说明理由.
在古腊毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形
1 3 6 10 15
则第个三角形数为( )
A. B C. D.
设是虚数单位,则等于
若,则有( )
A. B. C. D.
某生产厂商更新设备,已知在未来x 年内,此设备所花费的各种费用总和y(万元)与x
满足函数关系,若欲使此设备的年平均花费最低,则此设备的使用年限x为
( )
A.3 B.4 C.5 D.6