题目内容
数列{an}满足
a1+(
)2a2+…+(
)nan=
+
,n∈N*.当an取得最大值时n等于( )
| 11 |
| 9 |
| 11 |
| 9 |
| 11 |
| 9 |
| n2 |
| 2 |
| n |
| 2 |
| A.4 | B.5 | C.6 | D.7 |
| 11 |
| 9 |
| 1 |
| 2 |
a1=
| 9 |
| 11 |
| 11 |
| 9 |
| 11 |
| 9 |
| 11 |
| 9 |
| n2 |
| 2 |
| n |
| 2 |
| 11 |
| 9 |
| 11 |
| 9 |
| 11 |
| 9 |
| (n-1)2 |
| 2 |
| n-1 |
| 2 |
两式想减可得(
| 11 |
| 9 |
∴an=n•(
| 9 |
| 11 |
∴an-an-1=n•(
| 9 |
| 11 |
| 9 |
| 11 |
| 11-2n |
| 9 |
| 9 |
| 11 |
∴1≤n≤5时an-an-1>0,数列成递增趋势,n≥5时an-an-1<0,数列成递减趋势,
∴n=5时an最大
故选B.
练习册系列答案
相关题目