题目内容
19.设函数$f(x)=\left\{\begin{array}{l}{2^{x-1}},x<1\\{x^{\frac{1}{3}}},x≥1\end{array}\right.$则不等式f(x)≤2解集是{x|x≤8}.分析 根据分段函数的表达式进行求解即可.
解答 解:若x<1,则由f(x)≤2得2x-1≤2,即x-1≤1,即x≤2,此时x<1,
若x≥1,则由f(x)≤2得x${\;}^{\frac{1}{3}}$≤2,即x≤8,即1≤x≤8,
综上x≤8,
即不等式的解集为{x|x≤8},
故答案为:{x|x≤8}.
点评 本题主要考查不等式的求解,根据分段函数的表达式进行讨论求解即可.
练习册系列答案
相关题目
9.下列各角中,与50°的角终边相同的角是( )
| A. | -310° | B. | -50° | C. | 140° | D. | 40° |
10.
一个几何体的三视图如图所示,正视图为直角三角形、侧视图为等边三角形,俯视图为直角梯形,则该几何体的体积等于( )
| A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
14.函数f(x)=|x2-2x-1|,设a>b>1且f(a)=f(b),则(a-b)(a+b-2)的取值范围是( )
| A. | (0,4) | B. | [0,4) | C. | [1,3) | D. | (1,3) |
8.为了让贫困地区的孩子们过一个温暖的冬天,某校阳光志愿者社团组织“这个冬天不再冷”冬衣募捐活动,共有50名志愿者参与.志愿者的工作内容有两类:1.到各班做宣传,倡议同学们积极捐献冬衣;2.整理、打包募捐上来的衣物.每位志愿者根据自身实际情况,只参与其中的某一项工作.相关统计数据如下表所示:
(Ⅰ)据此统计,你是否认为志愿者对工作的选择与其性别有关?
(Ⅱ)用分层抽样的方法在从参与整理、打包衣物工作的志愿者中抽取5人,再从这5人中选2人.那么至少有一人是女生的概率是多少?
参考公式:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$.
| 到班级宣传 | 整理、打包衣物 | 总计 | |
| 男生 | 12 | 12 | 24 |
| 女生 | 8 | 18 | 26 |
| 总计 | 20 | 30 | 50 |
(Ⅱ)用分层抽样的方法在从参与整理、打包衣物工作的志愿者中抽取5人,再从这5人中选2人.那么至少有一人是女生的概率是多少?
参考公式:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$.
| P(X2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
| k0 | 2.706 | 3.841 | 6.635 | 7.879 |