题目内容

3.在△ABC中,a,b,c分别是角A,B,C的对边,已知(a-3b)cosC=c(3cosB-cosA).
(1)求$\frac{sinB}{sinA}$的值;
(2)若c=$\sqrt{7}$a,求角C的大小.

分析 (1)利用正弦定理将边化角整理化简条件式子,得出sinA和sinB的关系;
(2)用a表示b,c,使用余弦定理求出cosC.

解答 解:(1)∵(a-3b)cosC=c(3cosB-cosA),
∴sinAcosC-3sinBcosC=3cosBsinC-cosAsinC,
即sinAcosC+cosAsinC=3cosBsinC+3sinBcosC,
∴sin(A+C)=3sin(B+C),即sinB=3sinA,
∴$\frac{sinB}{sinA}$=3.
(2)∵$\frac{sinB}{sinA}$=3,∴b=3a.
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{{a}^{2}+9{a}^{2}-7{a}^{2}}{6{a}^{2}}$=$\frac{1}{2}$.
∴C=$\frac{π}{3}$.

点评 本题考查了正弦定理,余弦定理解三角形,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网