题目内容
已知双曲线x2-ky2=1的一个焦点是(,0),则其渐近线方程为________.
y=±2x
不论m取何值,直线(m-1)x-y+2m+1=0恒过定点________.
若直线y=kx+1与圆O:x2+y2=1交于A、B两点,且∠AOB=60°,则实数k=________.
根据下列条件求椭圆的标准方程:
(1)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和,过P作长轴的垂线恰好过椭圆的一个焦点;
(2)经过两点A(0,2)和B.
圆锥曲线C的两个焦点分别为F1,F2,若曲线C上存在点P满足|PF1|∶|F1F2|∶|PF2|=4∶3∶2,则曲线C的离心率为( )
A.或 B.或2
C.或2 D.或
已知双曲线Γ:=1(a>0,b>0)的离心率为2,过双曲线Γ的左焦点F作圆O:x2+y2=a2的两条切线,切点分别为A、B,则∠AFB=( )
A.45° B.60° C.90° D.120°
过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则△AOB的面积为( )
A. B. C. D.2
已知椭圆C:+=1(a>b>0)的离心率为,连接椭圆的四个顶点得到的四边形的面积为2.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程.
已知数列{an}满足:a1=1,a2=2,2an=an-1+an+1(n≥2,n∈N*),数列{bn}满足b1=2,anbn+1=2an+1bn.
(1)求数列{an}的通项an;
(2)求证:数列为等比数列,并求数列{bn}的通项公式.