题目内容

2.不等式(x-1)(x-5)(x+3)>0的解集为(-3,1)∪(5,+∞).

分析 不等式(x-1)(x-5)(x+3)>0即为$\left\{\begin{array}{l}{(x-1)(x-5)>0}\\{x+3>0}\end{array}\right.$或$\left\{\begin{array}{l}{(x-1)(x-5)<0}\\{x+3<0}\end{array}\right.$,再由一次或二次不等式的解法,即可得到解集.

解答 解:不等式(x-1)(x-5)(x+3)>0即为
$\left\{\begin{array}{l}{(x-1)(x-5)>0}\\{x+3>0}\end{array}\right.$或$\left\{\begin{array}{l}{(x-1)(x-5)<0}\\{x+3<0}\end{array}\right.$,
即有$\left\{\begin{array}{l}{x>5或x<1}\\{x>-3}\end{array}\right.$或$\left\{\begin{array}{l}{1<x<5}\\{x<-3}\end{array}\right.$,
解得x>5或-3<x<1或x∈∅,
则解集为(-3,1)∪(5,+∞).
故答案为:(-3,1)∪(5,+∞).

点评 本题考查高次不等式的解法,注意转化为二次不等式和一次不等式求解,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网