题目内容
1.已知函数f(x)=|x+a|(a∈R).(1)若a=1,解不等式f(x)+|x-3|≤2x;
(2)若不等式f(x)+|x-1|≥3在R上恒成立,求实数a的取值范围.
分析 (1)通过讨论x的范围,求出各个区间上的不等式的解集,取并集即可;(2)根据绝对值的性质问题转化为|a+1|≥3即可,求出a的范围即可.
解答 解:(1)依题意,|x+1|+|x-3|≤2x.
当x<-1时,原不等式化为-1-x+3-x≤2x,解得x≥21,故无解;
当-1≤x≤3时,原不等式化为x+1+3-x≤2x,解得x≥2,故2≤x≤3;
当x>3时,原不等式化为x+1+x-3≤2x,即-2≤0恒成立.
综上所述,不等式f(x)+|x-3|≤2x的解集为[2,+∞).(5分)
(2)f(x)+|x-1|≥3?|x+a|+|x-1|≥3恒成立,
由|x+a|+|x-1|≥|a+1|可知,只需|a+1|≥3即可,
故a≥2或a≤-4,即实数a的取值范围为{a|a≥2或a≤-4}.…(10分)
点评 本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.
练习册系列答案
相关题目
16.数列{an}满足a1=1,且对于任意的n∈N*都有an+1=an+a1+n,则$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2017}}}}$等于( )
| A. | $\frac{2016}{2017}$ | B. | $\frac{4032}{2017}$ | C. | $\frac{2017}{2018}$ | D. | $\frac{4034}{2018}$ |
6.已知l、m表示直线,α、β、γ表示平面,下列条件中能推出结论正确的选项是( )
条件:①l?α,α∥β;②α∥β,β∥γ;③l⊥α,α∥β;④l⊥m,l⊥α,m⊥β.
结论:a:l⊥β;b:α⊥β;c:l∥β;d:α∥γ.
条件:①l?α,α∥β;②α∥β,β∥γ;③l⊥α,α∥β;④l⊥m,l⊥α,m⊥β.
结论:a:l⊥β;b:α⊥β;c:l∥β;d:α∥γ.
| A. | ①⇒c、②⇒d、③⇒a、④⇒b | B. | ①⇒a、②⇒d、③⇒c、④⇒b | C. | ①⇒b、②⇒d、③⇒a、④⇒c | D. | ①⇒c、②⇒b、③⇒a、④⇒d |
11.要得到函数y=sin(5x-$\frac{π}{4}$)的图象,只需将函数y=cos5x的图象( )
| A. | 向左平移$\frac{3π}{20}$个单位 | B. | 向右平移$\frac{3π}{20}$个单位 | ||
| C. | 向左平移$\frac{3π}{4}$个单位 | D. | 向右平移$\frac{3π}{4}$个单位 |