题目内容

1.已知函数f(x)=|x+a|(a∈R).
(1)若a=1,解不等式f(x)+|x-3|≤2x;
(2)若不等式f(x)+|x-1|≥3在R上恒成立,求实数a的取值范围.

分析 (1)通过讨论x的范围,求出各个区间上的不等式的解集,取并集即可;(2)根据绝对值的性质问题转化为|a+1|≥3即可,求出a的范围即可.

解答 解:(1)依题意,|x+1|+|x-3|≤2x.
当x<-1时,原不等式化为-1-x+3-x≤2x,解得x≥21,故无解;
当-1≤x≤3时,原不等式化为x+1+3-x≤2x,解得x≥2,故2≤x≤3;
当x>3时,原不等式化为x+1+x-3≤2x,即-2≤0恒成立.
综上所述,不等式f(x)+|x-3|≤2x的解集为[2,+∞).(5分)
(2)f(x)+|x-1|≥3?|x+a|+|x-1|≥3恒成立,
由|x+a|+|x-1|≥|a+1|可知,只需|a+1|≥3即可,
故a≥2或a≤-4,即实数a的取值范围为{a|a≥2或a≤-4}.…(10分)

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网