题目内容
2.| A. | $\frac{420-32π}{3}$ | B. | $\frac{336-32π}{3}$ | C. | $\frac{168-4π}{3}$ | D. | $\frac{168\sqrt{2}-64\sqrt{2}π}{3}$ |
分析 由三视图可知:几何体为一个正四棱台挖去一个球,代入体积公式计算.
解答 解:由三视图可知:几何体为一个正四棱台挖去一个球,
∵俯视图中有2个边长分别为2和8的正方形.
∴主视图的等腰梯形的上底为2,下底为8,
又等腰梯形有内切圆,故易得等腰梯形的高为4,即球的半径为2,
∴V正四棱台=$\frac{1}{3}$×4×(22+82+8×2)=112,V球=$\frac{4}{3}$π•23=$\frac{32π}{3}$
∴几何体的体积是112-$\frac{32π}{3}$=$\frac{336-32π}{3}$,
故选:B
点评 本题考查了由三视图求几何体的体积,根据三视图判断相关几何量的数据是解题的关键.
练习册系列答案
相关题目
7..函数y=2sinxcosx的导数为( )
| A. | y′=cosx | B. | y′=2cos2x | C. | y′=2(sin2x-cos2x) | D. | y′=-sin2x |
7.某县共有户籍人口60万人,该县60岁以上、百岁以下的人口占比13.8%,百岁及以上的老人15人.现从该县60岁及以上、百岁以下的老人中随机抽取230人,得到如下频数分布表:
(1)从样本中70岁及以上老人中采用分层抽样的方法抽取21人进一步了解他们的生活状况,则80岁及以上老人应抽多少人?
(2)从(1)中所抽取的80岁及以上的老人中,再随机抽取2人,求抽到90岁及以上老人的概率;
(3)该县按省委办公厅、省人民政府办公厅《关于加强新时期老年人优待服务工作的意见》精神,制定如下老年人生活补贴措施,由省、市、县三级财政分级拨款.
①本县户籍60岁及以上居民,按城乡居民养老保险实施办法每月领取55元基本养老金;
②本县户籍80岁及以上老年人额外享受高龄老人生活补贴.
(a)百岁及以上老年人,每人每月发放345元生活补贴;
(b)90岁及以上、百岁以下老年人,每人每月发放200元的生活补贴;
(c)80岁及以上、90岁以下老年人,每人每月发放100元的生活补贴.
试估计政府执行此项补贴措施的年度预算.
| 年龄段(岁) | [60,70) | [70,80) | [80,90) | [90,99) |
| 人数(人) | 125 | 75 | 25 | 5 |
(2)从(1)中所抽取的80岁及以上的老人中,再随机抽取2人,求抽到90岁及以上老人的概率;
(3)该县按省委办公厅、省人民政府办公厅《关于加强新时期老年人优待服务工作的意见》精神,制定如下老年人生活补贴措施,由省、市、县三级财政分级拨款.
①本县户籍60岁及以上居民,按城乡居民养老保险实施办法每月领取55元基本养老金;
②本县户籍80岁及以上老年人额外享受高龄老人生活补贴.
(a)百岁及以上老年人,每人每月发放345元生活补贴;
(b)90岁及以上、百岁以下老年人,每人每月发放200元的生活补贴;
(c)80岁及以上、90岁以下老年人,每人每月发放100元的生活补贴.
试估计政府执行此项补贴措施的年度预算.
14.利用独立性检验来考虑两个分类变量X与Y是否有关系时,通过查阅下表来确定“X和Y有关系”的可信度,如果k>3.841,那么就有把握认为“X和Y有关系”的百分比为( )
| p(K2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 0.452 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.83 |
| A. | 25% | B. | 95% | C. | 5% | D. | 97.5% |