题目内容

设向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),其中0<β<α<π.
(1)若
a
b
,求
a
+
3
b
 |
的值;
(2)设向量
c
=(0,
3
)
,且
a
+
b
=
c
,求α,β的值.
考点:平面向量数量积的坐标表示、模、夹角
专题:平面向量及应用
分析:(1)利用数量积的运算性质即可得出;
(2)利用向量相等和诱导公式、三角函数的单调性即可得出.
解答: 解:(1)∵
a
=(cosα,sinα),
b
=(cosβ,sinβ),
∴|
a
|=1,|
b
|=1. 
a
b
,∴
a
b
=0.
于是|
a
+
3
b
|
=
a
2
+3
b
2
+2
3
a
b
=
12+3×12
=2.
a
+
3
b
 |=2

(2)∵
a
+
b
=(cosα+cosβ , sinα+sinβ)=(0 ,  
3
)

cosα+cosβ=0 
sinα+sinβ=
3
 

由此得cosα=cos(π-β),
由0<β<π,得0<π-β<π,
又0<α<π,故α=π-β. 
代入sinα+sinβ=
3
,得sinα=sinβ=
3
2

而0<β<α<π,∴α=
3
,  β=
π
3
点评:本题考查了数量积的运算性质、向量相等和诱导公式、三角函数的单调性等基础知识与基本技能方法,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网