题目内容
1.已知$sinα=\frac{{\sqrt{5}}}{5},sin({α-β})=-\frac{{\sqrt{10}}}{10},α,β$均为锐角,则cosβ=$\frac{{\sqrt{2}}}{2}$.分析 α,β的范围得出α-β的范围,然后利用同角三角函数间的基本关系,由sin(α-β)和sinα的值,求出cos(α-β)和cosα的值,然后由β=α-(α-β),把所求的式子利用两角差的余弦函数公式化简后,将各自的值代入即可求出值.
解答 解:由$sinα=\frac{{\sqrt{5}}}{5},sin({α-β})=-\frac{{\sqrt{10}}}{10},α,β$均为锐角,
得到α-β∈(-$\frac{π}{2}$,$\frac{π}{2}$),
所以cos(α-β)=$\sqrt{1-si{n}^{2}(α-β)}$=$\frac{3\sqrt{10}}{10}$,cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{2\sqrt{5}}{5}$,
则cosβ=cos[α-(α-β)]
=cos(α-β)cosα+sin(α-β)sinα=$\frac{3\sqrt{10}}{10}$×$\frac{2\sqrt{5}}{5}$+$\frac{\sqrt{5}}{5}×$(-$\frac{\sqrt{10}}{10}$)=$\frac{{\sqrt{2}}}{2}$.
故答案为:$\frac{{\sqrt{2}}}{2}$.
点评 此题考查学生灵活运用同角三角函数间的基本关系及两角和与差的正弦函数公式化简求值,是一道基础题.做题时注意角度的变换.
练习册系列答案
相关题目
10.将函数$f(x)=2sin({3x+\frac{π}{3}})$的图象向右平移θ个单位(θ>0)后,所得图象关于y轴对称,则θ的最小值为( )
| A. | $\frac{5π}{6}$ | B. | $\frac{5π}{18}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{18}$ |