题目内容
已知
=(1,sinθ),
=(1,cosθ),θ∈R.
(1)若
-
=(0,
),求sin2θ的值;
(2)若
+
=(2,0),求
的值.
| a |
| b |
(1)若
| a |
| b |
| 1 |
| 5 |
(2)若
| a |
| b |
| sinθ+2cosθ |
| 2sinθ-cosθ |
(1)∵
-
=(0,sinθ-cosθ)=(0,
),∴sinθ-cosθ=
,
平方得:2sinθcosθ=
,即sin2θ=
.
(2)∵
=(1,sinθ),
=(1,cosθ),∴
+
=(2,sinθ+cosθ)=(2,0),
∴sinθ+cosθ=0,∴tanθ=-1.∴
=
=
=-
.
| a |
| b |
| 1 |
| 5 |
| 1 |
| 5 |
平方得:2sinθcosθ=
| 24 |
| 25 |
| 24 |
| 25 |
(2)∵
| a |
| b |
| a |
| b |
∴sinθ+cosθ=0,∴tanθ=-1.∴
| sinθ+2cosθ |
| 2sinθ-cosθ |
| tanθ+2 |
| 2tanθ-1 |
| -1+2 |
| -2-1 |
| 1 |
| 3 |
练习册系列答案
相关题目
已知
=(1,sinα),
=(2,
)且
∥
,则锐角α的大小为( )
| a |
| b |
| 3 |
| a |
| b |
A、
| ||
B、
| ||
C、
| ||
D、
|