题目内容

如图,在三棱锥P-ABC中,PA⊥底面ABC,AC⊥BC,H为PC的中点,PA=AC=2,BC=1.
(Ⅰ)求证:AH⊥平面PBC;
(Ⅱ)求经过点P-ABC的球的表面积.
考点:球的体积和表面积,直线与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(Ⅰ)要证AH⊥面PBC,只要证AH垂直于面PBC内的两条相交直线即可,由已知易证AH⊥PC,再由已知结合线面垂直的判断证得BC⊥面PAC,则BC⊥AH,然后由线面垂直的判断得结论;
(Ⅱ)由题意,取BC的中点O,则O是球心,求出经过点P-ABC的球的半径,即可得出结论.
解答: (Ⅰ)证明:∵PA⊥底面ABC,BC?底面ABC,
∴PA⊥BC,
又AC⊥BC,PA∩AC=A,
∴BC⊥面PAC,
又AH?面PAC,
∴AH⊥BC,
∵H为PC的中点,且PA=AC,
∴AH⊥PC,
又PC∩BC=C,
∴AH⊥面PBC;
(Ⅱ)解:由题意,取BC的中点O,则O是球心,PB=3,
∴经过点P-ABC的球的半径为
3
2

∴S=4π×
9
4
=9π.
点评:本题考查了直线与平面平行的性质,考查了直线与平面垂直的判定,考查了学生的空间想象能力和思维能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网