题目内容
15.在锐角△ABC中,角A,B所对的边长分别为a,b,若2asinB=$\sqrt{3}$b,则角A等于( )| A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{3}$或$\frac{2π}{3}$ |
分析 已知等式利用正弦定理化简,根据sinB不为0求出sinA的值,再由A为锐角,利用特殊角的三角函数值即可求出A的度数.
解答 解:利用正弦定理化简已知等式得:2sinAsinB=$\sqrt{3}$sinB,
∵sinB≠0,
∴sinA=$\frac{\sqrt{3}}{2}$,
∵A为锐角,
∴A=$\frac{π}{3}$.
故选:A.
点评 此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键,属于基础题.
练习册系列答案
相关题目
5.已知实数a,b,c,满足a=log2257,b=22.6,c=$(\frac{1}{4})^{-\frac{\sqrt{3}}{3}}$,则a,b,c的大小关系是( )
| A. | a<b<c | B. | a<c<b | C. | c<b<a | D. | b<c<a |
6.一个半径为2的扇形的面积的数值是4,则这个扇形的中心角的弧度数为( )
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
10.设函数f(x)是定义在(0,+∞)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x-2014)2f(x-2014)-4f(2)>0的解集为( )
| A. | (2012,+∞) | B. | (0,2012) | C. | (0,2016) | D. | (2016,+∞) |
7.设非空集合A,B满足A⊆B,则以下表述正确的是( )
| A. | ?x0∈A,x0∈B | B. | ?x∈A,x∈B | C. | ?x0∈B,x0∉A | D. | ?x∈B,x∈A |