题目内容

已知菱形ABCD的边长为4,∠ABC=150°,若在菱形内任取一点,则该点到菱形的四个顶点的距离大于1的概率(  )
A、
π
4
B、1-
π
4
C、
π
8
D、1-
π
8
考点:几何概型
专题:概率与统计
分析:以菱形ABCD的各个顶点为圆心、半径为1作圆如图所示,可得当该点位于图中阴影部分区域时,它到四个顶点的距离均不小于1.因此算出菱形ABCD的面积和阴影部分区域的面积,利用几何概型计算公式加以计算,即可得到所求的概率.
解答: 解:分别以菱形ABCD的各个顶点为圆心,作半径为1的圆,如图所示.
在菱形ABCD内任取一点P,则点P位于四个圆的外部或在圆上时,
满足点P到四个顶点的距离均不小于1,即图中的阴影部分区域
∵S菱形ABCD=AB•BCsin30°=4×4×
1
2
=8,
∴S阴影=S菱形ABCD-S空白=8-π×12=8-π.
因此,该点到四个顶点的距离均不小于1的概率P=
S阴影
S菱形ABCD
=
8-π
8
=1-
π
8

故选:D
点评:本题给出菱形ABCD,求在菱形内部取点,使该点到各个顶点的距离均不小于1的概率.着重考查了菱形的面积公式、圆的面积公式和几何概型计算公式等知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网