题目内容
记an为(1+x)n+1的展开式中含xn-1项的系数,则
(
+
+…+
)= .
| lim |
| n→∞ |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
考点:极限及其运算
专题:等差数列与等比数列
分析:由题意可得 an=
=
,
=2(
-
),再根据
(
+
+…+
)=
2(1-
),利用数列极限的运算法则,计算求得结果.
| C | n-1 n+1 |
| n(n+1) |
| 2 |
| 1 |
| an |
| 1 |
| n |
| 1 |
| n+1 |
| lim |
| n→∞ |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| lim |
| n→∞ |
| 1 |
| n+1 |
解答:
解:由题意可得 an=
=
=
,
∴
=
=2(
-
),
∴
(
+
+…+
)=
2[(
-
)+(
-
)+(
-
)+…+(
-
)]=
2(1-
)=2,
故答案为:2.
| C | n-1 n+1 |
| C | 2 n+1 |
| n(n+1) |
| 2 |
∴
| 1 |
| an |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴
| lim |
| n→∞ |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| lim |
| n→∞ |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| lim |
| n→∞ |
| 1 |
| n+1 |
故答案为:2.
点评:本题主要考查利用裂项法进行数列求和,数列极限的运算法则的应用,属于基础题.
练习册系列答案
相关题目
若直线y=x+m与圆x2+y2+4x+2=0有两个不同的公共点,则实数m的取值范围是( )
| A、(0,4) | ||||
| B、(-4,0) | ||||
C、(-2-
| ||||
D、(2-
|
已知集合A={x|0<x<2},B={-1,0,1},则A∩B=( )
| A、{-1} | B、{0} |
| C、{1} | D、{0,1} |