题目内容

11.过(2,2)点与双曲线x2$-\frac{y^2}{4}=1$有共同渐近线的双曲线方程为(  )
A.x2$-\frac{y^2}{4}=-1$B.$\frac{x^2}{4}-{y^2}=1$C.$\frac{x^2}{3}-\frac{y^2}{12}=1$D.$\frac{y^2}{12}-\frac{x^2}{3}=1$

分析 要求的双曲线与双曲线x2-$\frac{{y}^{2}}{4}$=1有共同的渐近线,可设要求的双曲线的标准方程为:x2-$\frac{{y}^{2}}{4}$=λ.把点(2,2)代入可得λ,即可得出.

解答 解:∵要求的双曲线与双曲线x2-$\frac{{y}^{2}}{4}$=1有共同的渐近线,
∴可设要求的双曲线的标准方程为:x2-$\frac{{y}^{2}}{4}$=λ.
把点(2,2)代入可得:λ=4-1=3,
∴要求的双曲线的标准方程为:$\frac{{x}^{2}}{3}-\frac{{y}^{2}}{12}=1$.
故选C.

点评 本题考查了双曲线的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网