题目内容
已知an=(
)n-1(n∈N*),则10a1+9a2+8a3+…+3a8+2a9+a10=
.
| 1 |
| 2 |
| 9217 |
| 512 |
| 9217 |
| 512 |
分析:利用“错位相减法”即可得出.
解答:解:令S10=10a1+9a2+8a3+…+3a8+2a9+a10=10×1+9×
+8×(
)2+…+2×(
)8+1×(
)9,
∴
S10=10×
+9×(
)2+…+2×(
)9+(
)10.
两式相减得:-
S10=-10+
+(
)2+(
)3+…+(
)9+(
)10=-10+
=-9-
,
∴S10=18+
=
.
故答案为:
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
两式相减得:-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||||
1-
|
| 1 |
| 210 |
∴S10=18+
| 1 |
| 29 |
| 9217 |
| 512 |
故答案为:
| 9217 |
| 512 |
点评:本题考查了“错位相减法”和等比数列的前n项和公式,属于中档题.
练习册系列答案
相关题目