题目内容

1.如图1是四棱锥的直观图,其正(主)视图和侧(左)视图均为直角三角形,俯视图外框为矩形,相关数据如图2所示.

(1)设AB中点为O,在直线PC上找一点E,使得OE∥平面PAD,并说明理由;
(2)若直线PB与底面ABCD所成角的正切值为$\frac{{2\sqrt{5}}}{5}$,求四棱锥P-ABCD的外接球的表面积.

分析 (1)当E是PC中点时,OE∥平面PAD,取PD中点F,连接AF、EF、OF,证明四边形EFAO是平行四边形,即可证明OE∥平面ADP.
(2)由三视图可得PD⊥平面ABCD,连接DB,说明∠PBD是直线PB与底面ABCD所成角,由直观图易知四棱锥P-ABCD的外接球的直径即为PB,求出PB,然后求解四棱锥P-ABCD的外接球的表面积.

解答 解:(1)当E是PC中点时,OE∥平面PAD,
证明如下:取PD中点F,连接AF、EF、OF,
在△PDC中,E、F分别是PC、PD的中点,
∴EF是△PDC的中位线,
∴EF∥DC且$EF=\frac{1}{2}DC$,又O是AB中点,AB=DC,
∴EF∥AO且EF=AO,
∴四边形EFAO是平行四边形,
∴OE∥AF.
又∵AF?平面ADP,OE?平面ADP,
∴OE∥平面ADP.

(2)由三视图可得PD⊥平面ABCD,连接DB,
则∠PBD是直线PB与底面ABCD所成角,
在底面矩形ABCD中,AD=4,AB=8,$DB=4\sqrt{5}$,
∴$tan∠PBD=\frac{PD}{BD}=\frac{PD}{{4\sqrt{5}}}=\frac{{2\sqrt{5}}}{5}$,∴PD=8.
由直观图易知四棱锥P-ABCD的外接球的直径即为PB,
∴PB2=PD2+DB2=144.
故四棱锥P-ABCD的外接球的表面积为4πR2=144π.

点评 本题考查几何体的外接球的表面积,直线与平面平行的判断与应用,考查存在性问题,转化思想以及空间想象能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网