题目内容

13.已知正数a,b,c满足约束条件:$\left\{\begin{array}{l}{a≤b+c}\\{a≥\frac{1}{3}(b+c)}\end{array}\right.$,且$\left\{\begin{array}{l}{b≤a+c}\\{b≥c-2a}\end{array}\right.$,则$\frac{2c-b}{a}$的最大值为(  )
A.$\frac{9}{2}$B.$\frac{7}{2}$C.0D.-1

分析 由题意得到关于$\frac{b}{a},\frac{c}{a}$的不等式组,令x=$\frac{b}{a}$,y=$\frac{c}{a}$换元后作出可行域,进一步求得目标函数z=$\frac{2c-b}{a}$=-x+2y的最大值.

解答 解:由$\left\{\begin{array}{l}{a≤b+c}\\{a≥\frac{1}{3}(b+c)}\end{array}\right.$,且$\left\{\begin{array}{l}{b≤a+c}\\{b≥c-2a}\end{array}\right.$,
得$\left\{\begin{array}{l}{\frac{b}{a}+\frac{c}{a}≥1}\\{\frac{b}{a}+\frac{c}{a}≤3}\\{\frac{b}{a}-\frac{c}{a}≤1}\\{\frac{b}{a}-\frac{c}{a}≥-2}\end{array}\right.$,
令x=$\frac{b}{a}$,y=$\frac{c}{a}$,
则$\left\{\begin{array}{l}{x+y≥1}\\{x+y≤3}\\{x-y≤1}\\{x-y≥-2}\end{array}\right.$,z=$\frac{2c-b}{a}$=-x+2y.
作出可行域如图:
联立$\left\{\begin{array}{l}{x-y=-2}\\{x+y=3}\end{array}\right.$,解得A($\frac{1}{2},\frac{5}{2}$),
∴z=-x+2y的最大值为$\frac{9}{2}$.
故选:A.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网