ÌâÄ¿ÄÚÈÝ
19£®ÉèÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{r}^{2}-{a}^{2}}$=1µÄ½¹µãÔÚxÖáÉÏ£¬F1£¬F2·Ö±ðÊÇÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã£¬µãPÊÇÍÖÔ²ÔÚµÚÒ»ÏóÏÞÄڵĵ㣬ֱÏßF2P½»yÖáÓëµãQ£¬£¨¢ñ£©µ±r=1ʱ£¬
£¨i£©ÈôÍÖÔ²EµÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÇóÍÖÔ²EµÄ·½³Ì£»
£¨ii£©µ±µãPÔÚÖ±Ïßx+y=lÉÏʱ£¬ÇóÖ±ÏßF1PÓëF1QµÄ¼Ð½Ç£»
£¨¢ò£©µ±r=r0ʱ£¬Èô×ÜÓÐF1P¡ÍF1Q£¬²ÂÏ룺µ±a±ä»¯Ê±£¬µãPÊÇ·ñÔÚij¶¨Ö±ÏßÉÏ£¬ÈôÊÇд³ö¸ÃÖ±Ïß·½³Ì£¨²»±ØÇó½â¹ý³Ì£©£®
·ÖÎö £¨¢ñ£©£¨i£©£¬¸ù¾ÝÍÖÔ²µÄÀëÐÄÂÊ£¬ÒÔ¼°b2=1-a2£¬¼´¿ÉÇó³öÍÖÔ²EµÄ·½³Ì£¬
£¨ii£©ÉèP£¨x0£¬y0£©£¬F1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬ÆäÖÐc$\sqrt{2{a}^{2}-1}$£®ÀûÓÃбÂʵļÆË㹫ʽºÍµãбʽ¼´¿ÉµÃ³öÖ±ÏßF1PµÄбÂÊ£¬Ö±ÏßF2PµÄ·½³ÌΪбÂÊ£¬¸ù¾ÝбÂʳ˻ýµÈÓÚ-1¼´¿ÉÇó³ö¼Ð½Ç£¬
£¨¢ò£©ÓÉ£¨ii£©¼´¿ÉÇó³ö¹ýµãPΪ¶¨Ö±Ïߣ¬·½³ÌΪx+y=r0£®
½â´ð ½â£º£¨¢ñ£©£¨i£©£©ÒÀÌâÒâb2=1-a2£¬c=$\sqrt{2{a}^{2}-1}$£¬$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬½âµÃa2=$\frac{4}{5}$£¬b2=$\frac{1}{5}$£¬
ËùÒÔÍÖÔ²EµÄ·½³ÌΪ$\frac{5{x}^{2}}{4}$+5y2=1£»
£¨ii£©ÉèP£¨x0£¬y0£©£¬F1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬ÆäÖÐc=$\sqrt{2{a}^{2}-1}$£¬ÓÉÌâÉèÖªx0¡Ùc£¬
½«Ö±Ïßy=1-x´úÈëÍÖÔ²EµÄ·½³Ì£¬ÓÉÓÚµãPÊÇÍÖÔ²ÔÚµÚÒ»ÏóÏÞÄڵĵ㣬½âµÃx0=a2£¬y0=1-a2£¬
ÔòÖ±ÏßF1PµÄбÂÊΪ$\frac{{y}_{0}}{{x}_{0}+c}$£¬Ö±ÏßF2PµÄбÂÊΪ$\frac{{y}_{0}}{{x}_{0}-c}$£¬
Ö±ÏßF2PµÄ·½³ÌΪy=$\frac{{y}_{0}}{{x}_{0}-c}$£¨x-c£©£¬µ±x=0ʱ£¬y=$\frac{c{y}_{0}}{c-{x}_{0}}$
QµãµÄ×ø±êΪ£¨0£¬$\frac{c{y}_{0}}{c-{x}_{0}}$£©£¬
ËùÒÔÖ±ÏßF1QµÄбÂÊΪ$\frac{{y}_{0}}{c-{x}_{0}}$£¬
ËùÒÔ$\frac{{y}_{0}}{{x}_{0}+c}$•$\frac{{y}_{0}}{c-{x}_{0}}$=-1£¬
ËùÒÔ F1P¡ÍF1Q£¬
ËùÒÔÖ±ÏßF1PÓëF1QµÄ¼Ð½ÇΪ90¡ã£»
£¨¢ò£©¹ýµãPΪ¶¨Ö±Ïߣ¬·½³ÌΪx+y=r0£¬
ÀíÓÉÈçÏ£º
ÓÉ£¨ii£©¿ÉÖª£¬F1P¡ÍF1Q£¬
¡à$\frac{{y}_{0}}{{x}_{0}+c}$•$\frac{{y}_{0}}{c-{x}_{0}}$=-1£¬
»¯¼òµÃ y02=x02-£¨2a2-r0£©£®
ÒòΪ PΪÍÖÔ²EÉϵÚÒ»ÏóÏÞÄڵĵ㣬½«ÉÏʽ´úÈë$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{r}^{2}-{a}^{2}}$=1
µÃx0=a2£¬y0=r0-a2£¬
ËùÒÔx0+y0=r0£¬
ËùÒÔ·½³ÌΪx+y=r0
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°Æä¼¸ºÎÐÔÖÊ£¬Ö±ÏߺÍÖ±Ïß¡¢Ö±ÏߺÍÍÖÔ²µÄλÖùØÏµµÈ»ù´¡ÖªÊ¶ºÍ»ù±¾¼¼ÄÜ£¬¿¼²éÁËÊýÐνáºÏµÄ˼Ïë¡¢ÍÆÀíÄÜÁ¦ºÍ¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮