题目内容

8.已知0为坐标原点,抛物线y2=8x,直线l经过抛物线的焦点F,且与抛物线交于A、B两点(点A在第一象限),满足$\overrightarrow{BA}=4\overrightarrow{BF}$,则△A0B的面积为(  )
A.$\frac{{4\sqrt{6}}}{3}$B.$\frac{{8\sqrt{3}}}{3}$C.$\frac{{16\sqrt{3}}}{3}$D.$\frac{{16\sqrt{6}}}{3}$

分析 求出抛物线的焦点,设直线l为x=my+2,代入抛物线方程,运用韦达定理和向量的坐标表示,解得m,再由三角形的面积公式,计算即可得到.

解答 解:抛物线y2=8x的焦点为(2,0),
设直线l为x=my+2,代入抛物线方程可得y2-8my-16=0,
设A(x1,y1),B(x2,y2),
则y1+y2=8m,y1y2=-16,
由$\overrightarrow{BA}=4\overrightarrow{BF}$,可得y1=-3y2
由代入法,可得m2=$\frac{1}{3}$,
又△AOB的面积为S=$\frac{1}{2}$|OF|•|y1-y2|=$\frac{1}{2}×$2×$\sqrt{64{m}^{2}+64}$=$\frac{16\sqrt{3}}{3}$.
故选C

点评 本题考查直线和抛物线的位置关系,主要考查韦达定理和向量的共线的坐标表示,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网