ÌâÄ¿ÄÚÈÝ
¶¨Ò壺ÎÒÃǰÑÍÖÔ²µÄ½¹¾àÓ볤ÖáµÄ³¤¶ÈÖ®±È¼´e=
£¬½Ð×öÍÖÔ²µÄÀëÐÄÂÊ£®ÈôÁ½¸öÍÖÔ²µÄÀëÐÄÂÊeÏàͬ£¬³ÆÕâÁ½¸öÍÖÔ²ÏàËÆ£®
£¨1£©ÅжÏÍÖÔ²C1£º
+
=1ÓëÍÖÔ²C2£º
+y2=1ÊÇ·ñÏàËÆ£¿²¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÈôÍÖÔ²¦£1£º
+
=1£¨a£¾2£©ÓëÍÖÔ²¦£2£º
+
=1ÏàËÆ£¬ÇóaµÄÖµ£»
£¨3£©É趯ֱÏßl£ºy=kx+6Ó루2£©ÖеÄÍÖÔ²¦£1½»ÓÚM¡¢NÁ½µã£¬ÊÔ̽¾¿£ºÔÚÍÖÔ²¦£1ÉÏÊÇ·ñ´æÔÚÒìÓÚM¡¢NµÄ¶¨µãQ£¬Ê¹µÃÖ±ÏßQM¡¢QNµÄбÂÊÖ®»ýΪ¶¨Öµ£¿Èô´æÔÚ£¬Çó³ö¶¨µãQµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
| c |
| a |
£¨1£©ÅжÏÍÖÔ²C1£º
| x2 |
| 100 |
| y2 |
| 25 |
| x2 |
| 4 |
£¨2£©ÈôÍÖÔ²¦£1£º
| x2 |
| a2 |
| y2 |
| 4 |
| x2 |
| 8 |
| y2 |
| 16 |
£¨3£©É趯ֱÏßl£ºy=kx+6Ó루2£©ÖеÄÍÖÔ²¦£1½»ÓÚM¡¢NÁ½µã£¬ÊÔ̽¾¿£ºÔÚÍÖÔ²¦£1ÉÏÊÇ·ñ´æÔÚÒìÓÚM¡¢NµÄ¶¨µãQ£¬Ê¹µÃÖ±ÏßQM¡¢QNµÄбÂÊÖ®»ýΪ¶¨Öµ£¿Èô´æÔÚ£¬Çó³ö¶¨µãQµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©·Ö±ðÇó³öÍÖÔ²C1ºÍÍÖÔ²C2µÄÀëÐÄÂÊ£¬ÓÉ´ËÄÜÇó³öÍÖÔ²C1ÓëÍÖÔ²C2ÏàËÆ£®
£¨2£©ÓÉÌâÒâÖª
=
£¬ÓÉ´ËÄÜÇó³öaµÄÖµ£®
£¨3£©ÉèM£¨x1£¬y1£©¡¢N£¨x2£¬y2£©¡¢Q£¨x0£¬y0£©¡¢³£Êý¦Ë£¬y=kx+6´úÈë
+
=1£¬µÃ£¨1+2k2£©x2+24kx+64=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí½áºÏÌâÉèÌõ¼þÄÜÇó³ö¶¨µãQµÄ×ø±ê£®
£¨2£©ÓÉÌâÒâÖª
| ||
| a |
| ||
| 4 |
£¨3£©ÉèM£¨x1£¬y1£©¡¢N£¨x2£¬y2£©¡¢Q£¨x0£¬y0£©¡¢³£Êý¦Ë£¬y=kx+6´úÈë
| x2 |
| 8 |
| y2 |
| 4 |
½â´ð£º
½â£º£¨1£©ÍÖÔ²C1£º
+
=1µÄÀëÐÄÂÊe1=
=
£¬
ÍÖÔ²C2£º
+y2=1µÄÀëÐÄÂÊe2=
=
£¬
¡ße1=e2=
£¬¡àÍÖÔ²C1£º
+
=1ÓëÍÖÔ²C2£º
+y2=1ÏàËÆ£®¡£¨4·Ö£©
£¨2£©¡ßÍÖÔ²¦£1£º
+
=1£¨a£¾2£©ÓëÍÖÔ²¦£2£º
+
=1ÏàËÆ£¬
¡à
=
£¬
½âµÃa=2
£®¡£¨8·Ö£©
£¨3£©ÉèM£¨x1£¬y1£©¡¢N£¨x2£¬y2£©¡¢Q£¨x0£¬y0£©¡¢³£Êý¦Ë£¬
y=kx+6´úÈë
+
=1£¬µÃ£¨1+2k2£©x2+24kx+64=0£¬¡£¨10·Ö£©
Ôò¡÷£¾0£¬
£¬
´úÈë
•
=¦Ë£¬
ÕûÀíµÃ2(¦Ë
-
+4)k2+24¦Ëx0k+(¦Ë
-
+12y0+64¦Ë-36)=0£¬¡£¨12·Ö£©
ÓɦË
-
+4=¦Ëx0=¦Ë
-
+12y0+64¦Ë-36=0£¬¡£¨14·Ö£©
µÃ¦Ë=1£¬Q£¨0£¬-2£©»ò¦Ë=
£¬Q£¨0£¬2£©£®¡£¨16·Ö£©
| x2 |
| 100 |
| y2 |
| 25 |
| ||
|
| ||
| 2 |
ÍÖÔ²C2£º
| x2 |
| 4 |
| ||
|
| ||
| 2 |
¡ße1=e2=
| ||
| 2 |
| x2 |
| 100 |
| y2 |
| 25 |
| x2 |
| 4 |
£¨2£©¡ßÍÖÔ²¦£1£º
| x2 |
| a2 |
| y2 |
| 4 |
| x2 |
| 8 |
| y2 |
| 16 |
¡à
| ||
| a |
| ||
| 4 |
½âµÃa=2
| 2 |
£¨3£©ÉèM£¨x1£¬y1£©¡¢N£¨x2£¬y2£©¡¢Q£¨x0£¬y0£©¡¢³£Êý¦Ë£¬
y=kx+6´úÈë
| x2 |
| 8 |
| y2 |
| 4 |
Ôò¡÷£¾0£¬
|
´úÈë
| y1-y0 |
| x1-x0 |
| y2-y0 |
| x2-x0 |
ÕûÀíµÃ2(¦Ë
| x | 2 0 |
| y | 2 0 |
| x | 2 0 |
| y | 2 0 |
ÓɦË
| x | 2 0 |
| y | 2 0 |
| x | 2 0 |
| y | 2 0 |
µÃ¦Ë=1£¬Q£¨0£¬-2£©»ò¦Ë=
| 1 |
| 4 |
µãÆÀ£º±¾Ì⿼²éÍÖÔ²ÏàËÆµÄÅжϣ¬¿¼²éʵÊýÖµµÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄµãµÄ×ø±êµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿