题目内容

14.在平行四边形ABCD中,AC=5,BD=4,则$\overrightarrow{AB}$•$\overrightarrow{BC}$=(  )
A.$\frac{41}{4}$B.-$\frac{41}{4}$C.$\frac{9}{4}$D.-$\frac{9}{4}$

分析 利用向量加法、减法的三角形法则把$\overrightarrow{AC}、\overrightarrow{BD}$用向量$\overrightarrow{AB}、\overrightarrow{AD}$表示,平方后作差得答案.

解答 解:∵${\overrightarrow{BD}}^{2}=(\overrightarrow{AD}-\overrightarrow{AB})^{2}={\overrightarrow{AD}}^{2}+{\overrightarrow{AB}}^{2}$$-2\overrightarrow{AD}•\overrightarrow{AB}$,
${\overrightarrow{AC}}^{2}=(\overrightarrow{AD}+\overrightarrow{AB})^{2}$=${\overrightarrow{AD}}^{2}+{\overrightarrow{AB}}^{2}+2\overrightarrow{AD}•\overrightarrow{AB}$.
∴${\overrightarrow{AC}}^{2}-{\overrightarrow{BD}}^{2}=4\overrightarrow{AD}•\overrightarrow{AB}$,
则$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\frac{{\overrightarrow{AC}}^{2}-{\overrightarrow{BD}}^{2}}{4}=\frac{9}{4}$.
故选:C.

点评 本题考查平面向量的数量积运算,训练了向量加法、减法的三角形法则,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网