题目内容

已知偶函数f(x)满足f(x+1)=-
1
f(x)
,且当x∈[-1,0]时,f(x)=x2,若在区间[-1,3]内,函数g(x)=f(x)-loga(x+2)有4个零点,则实数a的取值范围是
 
考点:抽象函数及其应用,函数的零点与方程根的关系
专题:综合题,函数的性质及应用
分析:根据f(x+1)=-
1
f(x)
,可得f(x)是周期为2的周期函数. 再由f(x)是偶函数,当x∈[0,1]时,f(x)=x2,可得函数在[-1,3]上的解析式.根据题意可得函数y=f(x)的图象与y=loga(x+2有4个交点,即可得实数a的取值范围.
解答: 解:函数f(x)满足f(x+1)=-
1
f(x)
,故有f(x+2)=f(x),
故f(x)是周期为2的周期函数.
再由f(x)是偶函数,当x∈[0,1]时,f(x)=x2
可得当x∈[-1,0]时,f(x)=x2,故当x∈[-1,1]时,f(x)=x2 ,当x∈[1,3]时,f(x)=(x-2)2
由于函数g(x)=f(x)-loga(x+2)有4个零点,故函数y=f(x)的图象与y=loga(x+2)有4个交点,
所以可得1≥loga(3+2),
∴实数a的取值范围是[5,+∞).
故答案为:[5,+∞).
点评:本题主要考查函数的周期性的应用,函数的零点与方程的根的关系,体现了转化的数学思想,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网