题目内容

已知双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)的与双曲线C2:3x2-y2=1有公共渐近线,且过点A(1,0).
(1)求双曲线C1的标准方程;
(2)设F1、F2分别是双曲线C1左、右焦点.若P是该双曲线左支上的一点,且∠F1PF2=60°,求△F1PF2的面积S.
考点:双曲线的简单性质,直线与圆锥曲线的综合问题
专题:圆锥曲线的定义、性质与方程
分析:(1)由已知条件设双曲线C1:3x2-y2=λ,λ≠0,把点A(1,0)代入,能求出双曲线C1的标准方程.
(2)设|PF2|=m,|PF1|=n,由已知条件推导出|m-n|=2,由此利用余弦定理能求出mn=12,从而能求出△F1PF2的面积S.
解答: 解:(1)∵双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)的与双曲线C2:3x2-y2=1有公共渐近线,
∴设双曲线C1:3x2-y2=λ,λ≠0,
∵双曲线C1过点A(1,0),
∴3=λ,∴双曲线C1的标准方程为x2-
y2
3
=1

(2)设|PF2|=m,|PF1|=n,
则|m-n|=2,
在△F1PF2中,由余弦定理有16=m2+n2-2mncos60°=|m-n|2+2mn-mn,
∴mn=12,
S=
1
2
mnsin60°=
1
2
×12×
3
2
=3
3
点评:本题考查双曲线的标准方程的求法,考查三角形面积的求法,是中档题,解题时要认真审题,注意余弦定理的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网