题目内容
6.已知函数f(x)=xecosx(e为自然对数的底数),当x∈[-π,π]时,y=f(x)的图象大致是,( )| A. | B. | C. | D. |
分析 判断f(x)的奇偶性和单调性,即可得出答案.
解答 解:∵f(-x)=-xecos(-x)=-xecosx=-f(x),
∴f(x)是奇函数,图象关于原点对称,排除A,C;
∵f′(x)=ecosx+xecosx•(-sinx)=ecosx(1-xsinx),
令1-xsinx=0得sinx=$\frac{1}{x}$,
作出y=sinx和y=$\frac{1}{x}$的函数图象可知两图象在(0,π)上存在一个交点(x0,y0),
当0<x<x0时,1-xsinx>0,当x0<x<π时,1-xsinx<0,
∴f(x)在(0,π)先增后减,
故选B.
点评 本题考查了函数奇偶性,单调性的判断,导数与函数单调性的关系,属于中档题.
练习册系列答案
相关题目
14.在复平面内,复数z=i3(1+i)对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
15.福利彩票“双色球”中红球的号码可以从01,02,03,…,32,33这33个二位号码中选取,小明利用如图所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列和第10列的数字开始从左到右依次选取两个数字,则第四个被选中的红色球号码为( )
| 81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85 |
| 06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49 |
| A. | 12 | B. | 33 | C. | 06 | D. | 16 |
18.若直线经过A(0,3),B(0,-4)两点,则直线AB的斜率( )
| A. | 1 | B. | 0 | C. | -1 | D. | 不存在 |
15.某单位共有10名员工,他们某年的收入如下表:
(1)从该单位中任取2人,此2人中年薪收入高于7万的人数记为ξ,求ξ的分布列和期望;
(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元,5.5万元,6万元,8.5万元,预测该员工第五年的年薪为多少?
附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中系数计算公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本均值.
| 员工编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 年薪(万元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元,5.5万元,6万元,8.5万元,预测该员工第五年的年薪为多少?
附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中系数计算公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本均值.
16.已知i是虚数单位,z=2-3i,则$\frac{{{z^3}-1}}{\overline z}$在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |