题目内容

19.在三角形ABC中,有三边a,b,c,已知$\frac{1+cosB}{sinA}$=$\frac{\sqrt{3}b}{a}$,求∠B为多少?

分析 利用正弦定理将边化角,化简即可得出sinB,cosB的关系,利用同角三角函数的关系求出cosB,得出B的值.

解答 解:在三角形ABC中,∵$\frac{1+cosB}{sinA}$=$\frac{\sqrt{3}b}{a}$=$\frac{\sqrt{3}sinB}{sinA}$,
∴1+cosB=$\sqrt{3}$sinB,即cosB=$\sqrt{3}$sinB-1.
∵sin2B+cos2B=1,
∴4sin2B-2$\sqrt{3}$sinB=0,解得sinB=$\frac{\sqrt{3}}{2}$或sinB=0(舍),
∴cosB=$\sqrt{3}×\frac{\sqrt{3}}{2}-1$=$\frac{1}{2}$.
∴B=$\frac{π}{6}$.

点评 本题考查了正弦定理,同角三角函数的关系,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网