题目内容

如图所示,在边长为4的正方形ABCD的边上有一动点P,沿着折线BCDA由点B起(起点)向点A(终点)运动.设点P运动的路程为x,△APB的面积为y,求y与x之间的函数关系式,并写出程序.
考点:解三角形的实际应用
专题:应用题,解三角形
分析:先求出定义域,然后根据点P的位置进行分类讨论,根据三角形的面积公式求出每一段△ABP的面积与P移动的路程间的函数关系式,最后用分段函数进行表示即可,利用条件语句书写程序.
解答: 解:(1)由于x=0与x=12时,三点A、B、P不能构成三角形,故这个函数的定义域为(0,12).
当0<x≤4时,S=f(x)=
1
2
•4•x=2x;
当4<x≤8时,S=f(x)=8;
当8<x<12时,S=f(x)=
1
2
•4•(12-x)=2(12-x)=24-2x.
∴这个函数的解析式为f(x)=
2x ,x∈(0,4] 
8 ,x∈(4,8]
24-2x ,x∈(8,12)  

程序:INPUT“x=”;x
IF   x>=0  AND  x<=4   THEN
    y←2*x
ELSE   IF  x<=8  THEN
    y←8
ELSE  y←2*(12-x)
END  IF
END  IF
PRINT  y
END
点评:本题主要考查了函数解析式的求解,以及程序等有关基础知识,分类讨论的数学思想,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网