题目内容
19.已知命题$p:?x∈R,sinxcos({x-\frac{π}{6}})-cos({\frac{2π}{3}-x})cosx<\frac{m}{2}$;命题q:函数f(x)=x2-mx+3在(-1,1)上仅有1个零点.(1)若(¬p)∧q为真命题,求实数m的取值范围;
(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.
分析 分别求出p,q为真时的m的范围,(1)由(¬p)∧q为真命题,得到p假q真,求出m的范围即可;(2)由p∨q为真命题,p∧q为假命题,得到p,q一真一假; 求出m的范围即可.
解答 解:依题意,$sinxcos({x-\frac{π}{6}})-cos({\frac{2π}{3}-x})cosx=sinxcos({x-\frac{π}{6}})-cosxsin({x-\frac{π}{6}})=sin\frac{π}{6}=\frac{1}{2}$,解得m>1;
对于函数f(x)=x2-mx+3,若△=0,则函数f(x)的零点不在(-1,1)上,
故只需f(-1)f(1)<0,解得m<-4或m>4,
(显然x=-1或1时,f(x)=x2-mx+3≠0,否则在区间(-1,1)上无零点).
(1)若(?p)∧q为真,则实数m满足$\left\{\begin{array}{l}m≤1\\ m<-4或m>4\end{array}\right.$,
故m<-4,即实数m的取值范围为 (-∞,-4).
(2)若p∨q为真命题,p∧q为假命题,则p,q一真一假;
若p真q假,则实数m满足$\left\{\begin{array}{l}m>1\\-4≤m≤4\end{array}\right.$,即1<m≤4;
若p假q真,由(1)知,故m<-4,
综上所述,实数m的取值范围为(-∞,-4)∪(1,4].
点评 本题考查了三角不等式以及二次函数的性质,考查符合命题的判断,是一道中档题.
练习册系列答案
相关题目
14.已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为k的直线与C交于A,B两点,若$\sqrt{2}$$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,则k=( )
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |
11.函数$f(x)=\frac{{3{x^2}-8lnx}}{2lnx}$在[2,4]上的最大值为( )
| A. | $\frac{6-4ln2}{ln2}$ | B. | $\frac{6}{ln2}+4$ | C. | $\frac{12}{ln2}-4$ | D. | 3e-4 |
8.高斯函数f(x)=[x]的函数值表示不超过x的最大整数,如[-2.3]=-3,[1.2]=1.设函数g(x)=x-f(x),函数u(x)={sinπx},则下列说法正确的是( )
| A. | 函数g(x)与u(x)的值域相同 | B. | 函数g(x)与u(x)的最小正周期相同 | ||
| C. | 函数g(x)与u(x)的单调区间相同 | D. | 函数g(x)与u(x)奇偶性相同 |