题目内容

5.已知$\overrightarrow{a}$=($\sqrt{3}$,-1,0),$\overrightarrow{b}$=(k,0,1),$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,则k=$\frac{\sqrt{2}}{2}$.

分析 利用向量数量积公式,建立方程,即可求得k的值.

解答 解:$\overrightarrow{a}$=($\sqrt{3}$,-1,0),$\overrightarrow{b}$=(k,0,1),
且$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,
所以$\overrightarrow{a}$•$\overrightarrow{b}$=$\sqrt{3}$k=$\sqrt{{(\sqrt{3})}^{2}{+(-1)}^{2}{+0}^{2}}$×$\sqrt{{k}^{2}{+0}^{2}{+1}^{2}}$×cos60°,
解得k=$\frac{{\sqrt{2}}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$

点评 本题考查了向量数量积的定义与应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网