题目内容
5.已知$\overrightarrow{a}$=($\sqrt{3}$,-1,0),$\overrightarrow{b}$=(k,0,1),$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,则k=$\frac{\sqrt{2}}{2}$.分析 利用向量数量积公式,建立方程,即可求得k的值.
解答 解:$\overrightarrow{a}$=($\sqrt{3}$,-1,0),$\overrightarrow{b}$=(k,0,1),
且$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,
所以$\overrightarrow{a}$•$\overrightarrow{b}$=$\sqrt{3}$k=$\sqrt{{(\sqrt{3})}^{2}{+(-1)}^{2}{+0}^{2}}$×$\sqrt{{k}^{2}{+0}^{2}{+1}^{2}}$×cos60°,
解得k=$\frac{{\sqrt{2}}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$
点评 本题考查了向量数量积的定义与应用问题,是基础题目.
练习册系列答案
相关题目
15.“$\frac{1}{x}<\frac{1}{2}$”是“x>2”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
16.若实数x,y满足$\left\{\begin{array}{l}x+y≥3\\ x-y≤3\\ x+2y≤6\end{array}\right.$,则(x+1)2+y2的最小值为( )
| A. | $2\sqrt{2}$ | B. | $\sqrt{10}$ | C. | 8 | D. | 10 |
13.下面函数中在定义域内是奇函数和单调增函数的是( )
| A. | y=e-x-ex | B. | y=tanx | C. | y=x-3|x| | D. | y=ln(x+2)-ln(2-x) |
20.已知集合P={1,3,5,7},Q={x|2x-1>11},则P∩Q等于( )
| A. | {7} | B. | {5,7} | C. | {3,5,7} | D. | {x|6<x≤7} |
17.中心在原点,焦点坐标为$(±\sqrt{2},0)$的椭圆被直线y=x+1截得的弦中点横坐标为$-\frac{2}{3}$,则椭圆方程为( )
| A. | $\frac{x^2}{6}+\frac{y^2}{4}=1$ | B. | $\frac{x^2}{8}+\frac{y^2}{4}=1$ | C. | $\frac{y^2}{4}+\frac{x^2}{2}=1$ | D. | $\frac{x^2}{4}+\frac{y^2}{2}=1$ |
14.某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据
回归方程为$\widehat{y}$=bx+a其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$
(1)根据表中提供的数据,求出y与x的回归方程k;
(2)预测销售额为115万元时,大约需要多少万元广告费.
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
(1)根据表中提供的数据,求出y与x的回归方程k;
(2)预测销售额为115万元时,大约需要多少万元广告费.
15.已知角$α∈(\frac{π}{2},π)$,且tanα=-$\frac{{\sqrt{3}}}{3}$,则cosα的值为( )
| A. | $-\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |