题目内容

已知{an}是等差数列,其前n项和为,{bn}是等比数列,且a1=b1,a4+b4=27,S4-b4=10.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)记Tn=a1b1+a2b2+…+anbn(n∈N*),若对于任意不小于2的正整数n,恒有2n+1×λ×(9n2-21n+16)>Tn-8,求实数λ的取值范围.
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q,由条件得方程组
2+3d+2q3=27
8+6d-2q3=10
,由此能求出an=3n-1,bn=2n(n∈N*).
(Ⅱ)由Tn=2×2+5×22+8×23+…+(3n-1)×2n,利用错位相减法得到Tn=(3n-4)×2n+1+8,2n+1×λ×(9n2-21n+16)>Tn-8等价于(9n2-21n+16)λ>3n-4,由此能求出实数λ的范围.
解答: 解:(Ⅰ)设等差数列{an}的公差为d,
等比数列{bn}的公比为q,由a1=b1=2,
a4=2+3d,b4=2q3S4=8+6d
由条件得方程组
2+3d+2q3=27
8+6d-2q3=10

解得d=3,q=2,
∴an=3n-1,bn=2n(n∈N*).(6分)
(Ⅱ)由(Ⅰ)得Tn=2×2+5×22+8×23+…+(3n-1)×2n2Tn=2×22+5×23+8×24+…+(3n-1)×2n+1
由①-②得,
-Tn=2×2+3×22+3×23+…+3×2n-(3n-1)×2n+1
=
6×(1-2n)
1-2
-(3n-1)×2n+1-2
=-(3n-4)×2n+1-8

Tn=(3n-4)×2n+1+8,(10分)
2n+1×λ×(9n2-21n+16)>Tn-8等价于(9n2-21n+16)λ>3n-4,
∵n是正整数(不小于2),那么9n2-21n+16>0
λ>
3n-4
9n2-21n+16
,(12分)
f(n)=
3n-4
9n2-21n+16
=
3n-4
(3n-4)2+(3n-4)+4

由于n≥2,∴3n-4>0,f(n)=
1
(3n-4)+
4
3n-4
+1
1
5

当且仅当3n-4=
4
3n-4
时取等号,此时n=2
综上实数λ的范围为λ≥
1
5
.(14分)
点评:本题考查数列的通项公式的求法,考查实数的取值范围的求法,解题时要认真审题,注意错位相减法和等价转化思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网