题目内容

6.已知数列{an}是各项均为正数的等比数列,且满足$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{2}$=$\frac{2}{{a}_{1}}$+$\frac{2}{{a}_{2}}$,$\frac{{a}_{3}}{4}$+$\frac{{a}_{4}}{4}$=$\frac{4}{{a}_{3}}$+$\frac{4}{{a}_{4}}$,则a1a4=8.

分析 化简$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{2}$=$\frac{2}{{a}_{1}}$+$\frac{2}{{a}_{2}}$得a1a2的值,同理$\frac{{a}_{3}}{4}$+$\frac{{a}_{4}}{4}$=$\frac{4}{{a}_{3}}$+$\frac{4}{{a}_{4}}$得a3a4的值,再根据等比数列的性质求出a1a4的值.

解答 解:∵数列{an}是各项均为正数的等比数列,
且$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{2}$=$\frac{2}{{a}_{1}}$+$\frac{2}{{a}_{2}}$,
∴$\frac{{a}_{1}{+a}_{2}}{2}$=$\frac{2{(a}_{1}{+a}_{2})}{{{a}_{1}a}_{2}}$,
∴a1a2=2×2=4;
同理$\frac{{a}_{3}}{4}$+$\frac{{a}_{4}}{4}$=$\frac{4}{{a}_{3}}$+$\frac{4}{{a}_{4}}$,
得a3a4=4×4=16;
∴a1a2a3a4=4×16=64,
∴a1a4=a2a3=8.
故答案为:8.

点评 本题考查了等比数列的项的性质与应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网