题目内容

3.已知α是三角形的内角,sin(α+$\frac{π}{3}$)=$\frac{4}{5}$,则cos($\frac{5π}{12}$-α)=(  )
A.$\frac{\sqrt{2}}{10}$B.-$\frac{\sqrt{2}}{10}$C.-$\frac{7\sqrt{2}}{10}$D.$\frac{7\sqrt{2}}{10}$

分析 由条件判断α+$\frac{π}{3}$为钝角,求得cos(α+$\frac{π}{3}$)的值,再利用cos($\frac{5π}{12}$-α)=-cos[π-($\frac{5π}{12}$-α)]=-cos[($\frac{π}{3}$+α)+$\frac{π}{4}$],利用两角和的余弦公式计算求的结果.

解答 解:α是三角形的内角,∵sin(α+$\frac{π}{3}$)=$\frac{4}{5}$<$\frac{\sqrt{3}}{2}$,∴α+$\frac{π}{3}$为钝角,∴cos(α+$\frac{π}{3}$)=-$\frac{3}{5}$,
则cos($\frac{5π}{12}$-α)=-cos[π-($\frac{5π}{12}$-α)]=-cos[($\frac{π}{3}$+α)+$\frac{π}{4}$]=-cos(α+$\frac{π}{3}$)cos$\frac{π}{4}$+sin(α+$\frac{π}{3}$)sin$\frac{π}{4}$=-(-$\frac{3}{5}$)•$\frac{\sqrt{2}}{2}$+$\frac{4}{5}•\frac{\sqrt{2}}{2}$=$\frac{7\sqrt{2}}{10}$,
故选:D.

点评 本题主要考查利用诱导公式化简三角函数的值,同角三角函数的基本关系,判断α+$\frac{π}{3}$为钝角,是解题的关键,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网