题目内容
已知椭圆
的离心率为
,

轴被抛物线
截得的线段长等于
的长半轴长.
(1)求
的方程;
(2)设
与
轴的交点为
,过坐标原点
的直线
与
相交于
两点,直线
分别与
相交于
.
①证明:
为定值;
②记
的面积为
,试把
表示成
的函数,并求
的最大值.
(1)求
(2)设
与
①证明:
②记
(1)
(2)利用直线与抛物线以及直线于椭圆联立方程组来求解向量的坐标,利用数量积为零来证明垂直。当
,即
时,
(2)利用直线与抛物线以及直线于椭圆联立方程组来求解向量的坐标,利用数量积为零来证明垂直。当
试题分析:解:(1)由已知
在
由①②得,
(2)由
设
而
(3)设
即
由(2)知,
令
又
当
点评:解决的关键是利用抛物线的性质和椭圆的性质得到方程的求解,以及联立方程组来得到坐标,结合向量的数量积为零证明垂直,属于基础题。
练习册系列答案
相关题目