题目内容
若a、b、c、d、x、y是正实数,且P=+,Q=,则( )
A.P=Q B.P≥Q
C.P≤Q D.P>Q
C
已知数列{an}中,a1=1,Sn是数列{an}的前n项和,且对任意n∈N*,有an+1=kSn+1(k为常数).
(1)当k=2时,求a2、a3的值;
(2)试判断数列{an}是否为等比数列?请说明理由.
已知p:∃x∈R,mx2+2≤0,q:∀x∈R,x2-2mx+1>0,若p∨q为假命题,则实数m的取值范围是( )
A.m≥1 B.m≤-1
C.m≤-1或m≥1 D.-1≤m≤1
已知抛物线y=(m-1)x2+(m-2)x-1(x∈R).
(1)当m为何值时,抛物线与x轴有两个交点?
(2)若关于x的方程(m-1)x2+(m-2)x-1=0的两个不等实根的倒数平方和不大于2,求m的取值范围.
函数y= (x>1)的最小值是( )
A.2+2 B.2-2
C.2 D.2
某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y1和y2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________公里处.
函数y=logax+1(a>0且a≠1)的图象恒过定点A,若点A在直线+-4=0(m>0,n>0)上,则m+n的最小值为( )
A.2+ B.2 C.1 D.4
在平面直角坐标系中,若不等式组所表示的平面区域内恰有两个点在圆x2+(y-b)2=r2(r>0)上,则( )
A.b=0,r= B.b=1,r=1
C.b=-1,r= D.b=-1,r=
设P为直线3x+4y+3=0上的动点,过点P作圆C:x2+y2-2x-2y+1=0的两条切线,切点分别为A,B,则四边形PACB的面积最小值为( )
A.1 B.
C.2 D.