题目内容

若(1-x)2011=a0+a1x+…+a2011x2011(x∈R),则a1+…+a2011=(  )
A、2B、0C、-1D、-2
考点:二项式系数的性质
专题:二项式定理
分析:在所给的等式中,令x=0可得a0=1,在所给的等式中,再令x=1可得a0+a1+…+a2011=0,从而求得a1+…+a2011的值.
解答: 解:在(1-x)2011=a0+a1x+…+a2011x2011(x∈R)中,令x=0,可得a0=1.
在(1-x)2011=a0+a1x+…+a2011x2011(x∈R)中,再令x=1可得a0+a1+…+a2011=0,
∴a1+…+a2011=-1,
故选:C.
点评:本题主要考查二项式定理的应用,是给变量赋值的问题,关键是根据要求的结果,选择合适的数值代入,属于基题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网