题目内容
5.若正数x、y满足2x+y=1,则xy的范围是$(0,\frac{1}{8}]$.分析 首先确定最小值,然后利用均值不等式求解最大值即可求得最终结果,注意等号成立的条件.
解答 解:很明显xy>0,利用均值不等式考查函数xy的最大值:
根据题意,正实数x,y满足2x+y=1,
则 $xy=\frac{1}{2}(2x)y≤\frac{1}{2}{[\frac{2x+y}{2}]}^{2}=\frac{1}{2}×\frac{1}{4}=\frac{1}{8}$,
当且仅当2x=y=$\frac{1}{2}$时等号成立,
即xy的最大值为 $\frac{1}{8}$;
则xy的取值范围是 $(0,\frac{1}{8}]$.
故答案为:$(0,\frac{1}{8}]$.
点评 本题考查均值不等式及其应用,重点考查学生对基础概念的理解和计算能力,属于基础题.
练习册系列答案
相关题目
13.设正项等比数列{an}满足:an•an+1=4n+6,则a100=( )
| A. | 2211 | B. | ($\sqrt{2}$)211 | C. | 4211 | D. | 2105 |
20.设$\overrightarrow{a}$=(x,2),$\overrightarrow{b}$=(x-2,2x),当$\overrightarrow{a}$•$\overrightarrow{b}$最小时,cos<$\overrightarrow{a}$,$\overrightarrow{b}$>的值为( )
| A. | -$\frac{\sqrt{65}}{65}$ | B. | 0 | C. | 1 | D. | -1 |
10.在${(\frac{x}{2}-\frac{1}{{\root{3}{x}}})^n}$的二项展开式中,只有第5项的二项式系数最大,则此展开式中各项系数绝对值之和为( )
| A. | ${(\frac{1}{2})^9}$ | B. | ${(\frac{3}{2})^9}$ | C. | ${(\frac{1}{2})^8}$ | D. | ${(\frac{3}{2})^8}$ |
17.已知定义在R上的函数f(x)=log2(ax-b+1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是( )
| A. | $0<\frac{1}{a}<\frac{1}{b}<1$ | B. | $0<\frac{1}{b}<a<1$ | C. | $0<b<\frac{1}{a}<1$ | D. | $0<\frac{1}{a}<b<1$ |
15.将一张画有平面直角坐标系的图纸折叠一次,使得点A(0,2)与点B(1,1)重合,若此时点C(7,3)与点D(m,n)重合,则m的值为( )
| A. | $\frac{5}{2}$ | B. | 2 | C. | 4 | D. | $\frac{17}{4}$ |