题目内容

已知函数y=
sin2x
+lg(4-x2)的定义域是
 
(结果用区间表示)
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据函数成立的条件,即可求出函数的定义域.
解答: 解:要使函数有意义,
sin2x≥0
4-x2>0

2kπ≤2x≤2kπ+π,k∈Z
-2<x<2

则-2<x≤-
π
2
或0≤x≤
π
2

故函数的定义域为{x|-2<x≤-
π
2
或0≤x≤
π
2
},
故答案为:{x|-2<x≤-
π
2
或0≤x≤
π
2
}.
点评:本题主要考查函数定义域的求法,要求熟练掌握常见函数成立的条件,比较基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网