题目内容
19.若$\overrightarrow{AB}•\overrightarrow{BC}=0$,$|{\overrightarrow{AB}}|=1$,$|{\overrightarrow{BC}}|=2$,$\overrightarrow{AD}•\overrightarrow{DC}=0$,则$|{\overrightarrow{BD}}|$的最大值为$\sqrt{5}$.分析 根据题意可得AB⊥BC,AD⊥DC.因此四边形ABCD内接于圆O.可得|$\overrightarrow{BD}$|的最大值为直径AC
解答
解:如图所示:∵$\overrightarrow{AB}•\overrightarrow{BC}=0$,$\overrightarrow{AD}•\overrightarrow{DC}=0$,
∴$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,$\overrightarrow{AD}$⊥$\overrightarrow{DC}$,
∴四边形ABCD内接于圆O.
可得⊙O的直径AC=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$.
则|$\overrightarrow{BD}$|的最大值为直径$\sqrt{5}$.
故答案为:$\sqrt{5}$
点评 本题考查了圆的内接四边形、数量积运算性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目