题目内容
10.已知f(x)为奇函数,函数g(x)与f(x)的图象关于直线y=x+1对称.若g(1)=4.则f(-3)=-2.分析 求出(1,4)关于直线y=x+1的对称点,代入f(x),利用f(x)的奇偶性得出.
解答 解:设A(1,4),A关于直线y=x+1的对称点为A'(a,b).则$\left\{\begin{array}{l}{\frac{4+b}{2}=\frac{1+a}{2}+1}\\{\frac{b-4}{a-1}=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=3}\\{b=2}\end{array}\right.$.
∵函数g(x)与f(x)的图象关于直线y=x+1对称,g(1)=4,
∴f(3)=2,∵f(x)为奇函数,∴f(-3)=-2.
故答案为-2.
点评 本题考查了函数奇偶性的性质,函数的对称性,属于中档题.
练习册系列答案
相关题目
18.若函数f(x)=$\left\{\begin{array}{l}{{5}^{-x},x∈(-1,0]}\\{{5}^{x},x∈[0,1]}\end{array}\right.$,则f(log54)=( )
| A. | $\frac{1}{3}$ | B. | 3 | C. | $\frac{1}{4}$ | D. | 4 |
5.已知集合M={0,1,2,3,4},N={x|1<log2(x+2)<2},则M∩N=( )
| A. | {1} | B. | {2,3} | C. | {0,1} | D. | {2,3,4} |
15.已知集合M={0,1,2,3,4},N={x|1<log2(x+2)<2},则M∩N=( )
| A. | {0,1} | B. | {2,3} | C. | {1} | D. | {2,3,4} |
19.化简$\frac{sin(2π-α)tan(π+α)sin(\frac{π}{2}+α)}{cos(π-α)tan(3π-α)}$=( )
| A. | cosα | B. | -sinα | C. | -cosα | D. | sinα |