题目内容

求函数y=
x2-1
x2+2x+1
的值域.
考点:函数的值域
专题:函数的性质及应用
分析:分离常数法,原函数可化为y=1-
2
x+1
,则值域可求.
解答: 解:y=
x2-1
x2+2x+1
=
(x+1)(x-1)
(x+1)2
=
x-1
x+1
=1-
2
x+1

由于x+1≠0,则y≠1,故其值域为(-∞,1)∪(1,+∞).
点评:本题考查了函数值域的求法,考查了分离常数法等,考生要重点掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网