题目内容
求证:在△ABC中,sinA·cosB·cosC+cosA·sinB·cosC+cosA·cosB·sinC=sinA·sinB·sinC.
证明:由A、B、C为△ABC内角,
∴A+B+C=π.
∴左边=cosC(sinAcosB+cosAsinB)+cosAcosBsinC
=cosCsin(A+B)+cosAcosBsinC
=sinC[-cos(A+B)+cosAcosB]
=sinC[-cosAcosB+sinAsinB+cosAcosB]
=sinAsinBsinC.
练习册系列答案
相关题目