题目内容
15.(1)解不等式|x-1|+|x+2|≥5的解集.(2)若关于x的不等式|ax-2|<3的解集为{x|-$\frac{5}{3}$<x<$\frac{1}{3}$},求a的值.
分析 (1)通过讨论a的范围,求出各个区间上的x的范围,取并集即可;
(2)得到-1<ax<5.通过讨论a的范围结合不等式的解集求出a的值即可.
解答 解 (1)当x<-2时,不等式等价于-(x-1)-(x+2)≥5,解得x≤-3;
当-2≤x<1时,不等式等价于-(x-1)+(x+2)≥5,即3≥5,无解;
当x≥1时,不等式等价于x-1+x+2≥5,解得x≥2.
综上,不等式的解集为{x|x≤-3或x≥2}.
(2)∵|ax-2|<3,∴-1<ax<5.
当a>0时,-$\frac{1}{a}$<x<$\frac{5}{a}$,与已知条件不符;
当a=0时,x∈R,与已知条件不符;
当a<0时,$\frac{5}{a}$<x<-$\frac{1}{a}$,
又不等式的解集为{x|-$\frac{5}{3}$<x<$\frac{1}{3}$},故a=-3.
点评 本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.
练习册系列答案
相关题目
12.若二项式${({{x^2}-\frac{2}{x}})^n}$展开式的二项式系数之和为8,则该展开式的系数之和为( )
| A. | -1 | B. | 1 | C. | 27 | D. | -27 |
10.如果|cos θ|=$\frac{1}{5}$,$\frac{7π}{2}$<θ<4π,那么cos$\frac{θ}{2}$的值等于( )
| A. | $\frac{\sqrt{10}}{5}$ | B. | -$\frac{\sqrt{10}}{5}$ | C. | $\frac{\sqrt{15}}{5}$ | D. | -$\frac{\sqrt{15}}{5}$ |
4.函数$f(x)=2sin({ωx+φ})({0<ω<12,|φ|<\frac{π}{2}})$,若$f(0)=-\sqrt{3}$,且函数f(x)的图象关于直线$x=-\frac{π}{12}$对称,则以下结论正确的是( )
| A. | 函数f(x)的最小正周期为$\frac{π}{3}$ | |
| B. | 函数f(x)的图象关于点$({\frac{7π}{9},0})$对称 | |
| C. | 函数f(x)在区间$({\frac{π}{4},\frac{11π}{24}})$上是增函数 | |
| D. | 由y=2cos2x的图象向右平移$\frac{5π}{12}$个单位长度可以得到函数f(x)的图象 |