ÌâÄ¿ÄÚÈÝ

16£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬¹ýF2µÄÖ±Ïß½»ÍÖÔ²EÓÚA¡¢BÁ½µã£¬ÇÒÈý½ÇÐÎABF1µÄÖܳ¤Îª8$\sqrt{2}$£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚÖ±Ïßl1£ºy=x+mÓëÍÖÔ²E½»ÓÚ²»Í¬µÄC¡¢DÁ½µã£¬ÇÒ¹ýÏß¶ÎCDµÄÖеãMÓëF2µÄÖ±Ïßl2´¹Ö±ÓÚÖ±Ïßl1£¿ÈôÓУ¬Çó³ömµÄÖµ£¬ÈôÎÞ£¬Çë·ÖÎö˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÒÑÖª½áºÏÍÖÔ²¶¨ÒåÇóµÃa£¬ÔÙÓÉÀëÐÄÂÊÇóµÃc£¬ÓÉÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©ÉèC£¨x1£¬y1£©¡¢D£¨x2£¬y2£©¡¢M£¨x0£¬y0£©£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµÇó³öMµÄ×ø±ê£¬ÔÙÓÉÁ½Ö±ÏßбÂʵĹØÏµÇóµÃmÖµ£¬ÓÉËùÇómÖµ²»Âú×ãÅбðʽ´óÓÚ0£¬¿ÉµÃ²»´æÔÚÖ±Ïßl1ÓëÍÖÔ²E½»ÓÚ²»Í¬µÄC¡¢DÁ½µã£¬ÇÒ¹ýÏß¶ÎCDµÄÖеãMÓëF2µÄÖ±Ïßl2´¹Ö±ÓÚÖ±Ïßl1£®

½â´ð ½â£º£¨1£©ÒÀÌâÒâµÃ£º$|A{F}_{1}|+|A{F}_{2}|+|B{F}_{1}|+|B{F}_{2}|=2a+2a=4a=8\sqrt{2}$£¬µÃa=$2\sqrt{2}$£®
 ÓÖ¡ße=$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬½âµÃc=2£¬¡àb2=a2-c2=4£®
¡àÍÖÔ²EµÄ·½³ÌΪ$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$£»
£¨2£©ÉèC£¨x1£¬y1£©¡¢D£¨x2£¬y2£©¡¢M£¨x0£¬y0£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\\{y=x+m}\end{array}\right.$£¬ÏûÈ¥yµÃ3x2+4mx+2m2-8=0£®
¡à${x}_{1}+{x}_{2}=-\frac{4m}{3}$£¬${y}_{1}+{y}_{2}=£¨{x}_{1}+{x}_{2}£©+2m=-\frac{4m}{3}+2m=\frac{2m}{3}$£®

¡à${x}_{0}=\frac{{x}_{1}+{x}_{2}}{2}=-\frac{2m}{3}£¬{y}_{0}=\frac{{y}_{1}+{y}_{2}}{2}=\frac{m}{3}$£¬
¡àM£¨$-\frac{2m}{3}£¬\frac{m}{3}$£©£®
¡ßÖ±Ïßl2´¹Ö±ÓÚÖ±Ïßl1£¬¡à${k}_{{l}_{2}}=\frac{\frac{m}{3}-0}{-\frac{2m}{3}-2}=-1$£¬µÃm=-6£®
ÓÖ¡ßÖ±Ïßl1ÓëÍÖÔ²E½»ÓÚ²»Í¬µÄC¡¢DÁ½µã£¬
¡à¡÷=96-8m2£¾0£¬½âµÃ-2$\sqrt{3}$£¼m£¼2$\sqrt{3}$£®
m=-6∉£¨-$2\sqrt{3}$£¬2$\sqrt{3}$£©£¬
¡à²»´æÔÚÖ±Ïßl1ÓëÍÖÔ²E½»ÓÚ²»Í¬µÄC¡¢DÁ½µã£¬ÇÒ¹ýÏß¶ÎCDµÄÖеãMÓëF2µÄÖ±Ïßl2´¹Ö±ÓÚÖ±Ïßl1£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²±ê×¼·½³ÌµÄÇ󷨣¬¿¼²éÁËÖ±ÏßÓëÍÖԲλÖùØÏµµÄÓ¦Ó㬿¼²éÖ±Ïß´¹Ö±ÓëбÂʵĹØÏµ£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø