题目内容
| lim |
| n→∞ |
| (1+2+22+…+2n)2 | ||||||
|
| A、16 | B、8 | C、4 | D、2 |
分析:由题意知
可转化为
,由此可求出
的值.
| lim |
| n→∞ |
| (1+2+22+…+2n)2 | ||||||
|
| lim |
| n→∞ |
[
| ||
| 22n-1 |
| lim |
| n→∞ |
| (1+2+22+…+2n)2 | ||||||
|
解答:解:
=
=
=
=2;
故选D.
| lim |
| n→∞ |
| (1+2+22+…+2n)2 | ||||||
|
=
| lim |
| n→∞ |
[
| ||
| 22n-1 |
=
| lim |
| n→∞ |
| (2n-1)2 |
| 22n-1 |
=
| lim |
| n→∞ |
| 22n-2•2n+1 |
| 22n-1 |
故选D.
点评:本题考查数列的极限,解题的关键是合理地进行等价转化.
练习册系列答案
相关题目
| lim |
| n→∞ |
| 1+2+3+…+n |
| n2 |
| A、2 | ||
| B、4 | ||
C、
| ||
| D、0 |