题目内容

14.已知等比数列{an}的前n项和为Sn,a1+a3=5,S4=15,则S6=(  )
A.15B.31C.40D.63

分析 设等比数列{an}的公比为q≠1,根据a1+a3=5,S4=15,可得${a}_{1}(1+{q}^{2})$=5,$\frac{{a}_{1}({q}^{4}-1)}{q-1}$=15,解出进而得出.

解答 解:设等比数列{an}的公比为q≠1,∵a1+a3=5,S4=15,
∴${a}_{1}(1+{q}^{2})$=5,$\frac{{a}_{1}({q}^{4}-1)}{q-1}$=15,
解得a1=1,q=2.
则S6=$\frac{{2}^{6}-1}{2-1}$=63.
故选:D.

点评 本题考查了等比数列的通项公式与前n项和,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网