题目内容
6.设正项等比数列{bn}的前n项和为Sn,b3=4,S3=7,数列{an}满足an+1-an=n+1(n∈N*),且a1=b1(Ⅰ)求数列{an}的通项公式
(Ⅱ)求数列{$\frac{1}{{a}_{n}}$}的前n项和.
分析 (I)设正项等比数列{bn}的公比为q>0,由b3=4,S3=7,可得${b}_{3}+\frac{{b}_{3}}{q}+\frac{{b}_{3}}{{q}^{2}}$=3$(1+\frac{1}{q}+\frac{1}{{q}^{2}})$=7,解得q.可得b1×22=4,解得b1,可得a1=b1.由数列{an}满足an+1-an=n+1(n∈N*),利用an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1即可得出.
(II)$\frac{1}{{a}_{n}}$=$2(\frac{1}{n}-\frac{1}{n+1})$.利用“裂项求和”方法即可得出.
解答 解:(I)设正项等比数列{bn}的公比为q>0,∵b3=4,S3=7,
∴${b}_{3}+\frac{{b}_{3}}{q}+\frac{{b}_{3}}{{q}^{2}}$=3$(1+\frac{1}{q}+\frac{1}{{q}^{2}})$=7,解得q=2.∴b1×22=4,解得b1=1,∴a1=b1=1.
∵数列{an}满足an+1-an=n+1(n∈N*),
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=n+(n-1)+…+2+1=$\frac{n(n+1)}{2}$.
(II)$\frac{1}{{a}_{n}}$=$2(\frac{1}{n}-\frac{1}{n+1})$.
∴数列{$\frac{1}{{a}_{n}}$}的前n项和=$2[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=2$(1-\frac{1}{n+1})$
=$\frac{2n}{n+1}$.
点评 本题考查了等差数列与等比数列的通项公式与求和公式、“累加求和”与“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
| A. | m>0,n>0 | B. | m<0,n>0 | C. | m>0,n<0 | D. | m<0,n<0 |
| A. | 15 | B. | 31 | C. | 40 | D. | 63 |
| A. | $\sqrt{{π^2}+4}$ | B. | π | C. | 2 | D. | $\sqrt{{π^2}+1}$ |